OBJ2TEXT implementation with PyTorch
方法、demo及源码,参考http://www.cs.virginia.edu/~xy4cm/obj2text/
Download MSCOCO dataset including annotations
train2014/
, val2014/
, test2014/
and annotations/captions_train2014.json
, annotations/captions_val2014.json
Collect object detection results on MS COCO dataset
- Checkout the yolo-coco-result branch of this repositoryhttps://github.com/xuwangyin/darknet/tree/yolo-coco-result, compile the code and download the weight file named yolo.weights according to https://pjreddie.com/darknet/yolo/, or just run this command
wget https://pjreddie.com/media/files/yolo.weights
- List absolute paths of all the MS COCO image files into a text file
find pwd -name "*.jpg" > image_files.txt
, wherepwd
is the directory that contains MS COCO image dirstrain2014
,val2014
andtest2014
. - Put
image_files.txt
in the darknet proejct directory and run./darknet detect cfg/yolo.cfg yolo.weights data/dog.jpg > coco_detection_result
to collect the result. I think it should beimage_files.txt
instead ofdata/dog.jpg
.
Now we get coco_detection_result
file, dectection result of coco dataset images using yolo.
Image caption
Clone https://github.com/xuwangyin/pytorch-tutorial/tree/master/tutorials/03-advanced/image_captioning.
Processing
pythob build_vocab.py --caption_path